Math 210C Lecture 8 Notes

Daniel Raban

April 17, 2019

1 Fractional Ideals in Dedekind Domains

1.1 Fractional ideals

Recall from last time:

Definition 1.1. A **Dedekind domain** is a noetherian domain which is integrally closed and of Krull dimension ≤ 1 .

Example 1.1. Dedekind domains of Krull dimension 0 are fields.

Proposition 1.1. Let A be a Dedekind domain, and let $S \subseteq A$ be multiplicative. Then $S^{-1}A$ is a Dedekind domain.

Proof. Check the 3 parts of the definition.

Example 1.2. Dedekind domains may not be UFDs. $\mathbb{Z}[\sqrt{-5}]$ is such an example.

However, there is unique factorization of ideals in Dedekind domains.

Lemma 1.1. Let A be a noetherian domain, and let $\mathfrak{a} \subseteq A$ be a noetherian domain. There exist nonzero primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_k \subseteq A$ such that $\mathfrak{p}_1 \cdots \mathfrak{p}_k \subseteq \mathfrak{a}$.

Proof. Let $\mathfrak{a} = \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_k$ be a primary decomposition. Then, setting $\sqrt{\mathfrak{q}_i} = \mathfrak{p}_i$, we get $\mathfrak{p}_i^{k_i} \subseteq \mathfrak{q}_i$ for some k_i , as A is noetherian. Then $\mathfrak{p}_1^{k_1} \cdots \mathfrak{p}_r^{k_r} \subseteq \mathfrak{q}_1, \ldots, \mathfrak{q}_r \subseteq \mathfrak{a}$.

Lemma 1.2. Let $\mathfrak{p}_i, \mathfrak{p}$ be prime ideals. If $\mathfrak{p}_1 \cdots \mathfrak{p}_k \subseteq \mathfrak{a} \subseteq \mathfrak{p}$, then $\mathfrak{p} = \mathfrak{p}_i$ for some *i*.

Definition 1.2. A fractional ideal in a domain A is a nonzero A-submodule \mathfrak{a} of Q(A) such that there exists nonzero $d \in A$ with $d\mathfrak{a} \subseteq A$.

Example 1.3. Let $a \in Q(A)^{\times}$. Consider $Aa = (a) \subseteq Q(A)$. Then a = b/c, where $b, c \in A$ and $c \neq 0$. Then $c(a) = (ac) = (b) \subseteq A$. Here, (a) is called a **principal fractional ideal**.

Example 1.4. Let $\mathfrak{a} \subseteq A$ be a nonzero ideal. Then \mathfrak{a} is a fractional ideal contained in A.

Lemma 1.3. Let A be a noetherian domain, and let \mathfrak{a} be a nonzero A-submodule of Q(A). Then \mathfrak{a} is a fractional ideal if and only if \mathfrak{a} is finitely generated as an A-module.

Proof. Let \mathfrak{a} be finitely generated. Then $\mathfrak{a} = A(b - 1/c_1, \ldots, b_k/c_k \subseteq Q(A)$. Take $d = c_1, \ldots, c_k \in \mathbb{A} \setminus \{0\}$. Then $d\mathfrak{a} \subseteq A$, so \mathfrak{a} is fractional.

Conversely, suppose \mathfrak{a} is fractional. Then there exists $d \in A \setminus \{0\}$ such that $d\mathfrak{a} \subseteq A$. Since A is noetherian, $d\mathfrak{a} = (b_1, \ldots, b_k, \text{ so } \mathfrak{a} = A(b_1/d, \ldots, b_k/d)$ is finitely generated. \Box

1.2 Inverses of fractional ideals

Definition 1.3. Let A be a domain with K = Q(A) and fractional ideals $\mathfrak{a}, \mathfrak{b}$. The **inverse** of \mathfrak{a} is $\mathfrak{a}^{-1} = \{b \in Q(A) : b\mathfrak{a} \subseteq A\}$. The **product** $\mathfrak{a}\mathfrak{b}$ is the A submodule of Q(A) generated by $\{ab : a \in \mathfrak{a}, b \in \mathfrak{b}\}$.

Example 1.5. Let $\mathfrak{a} = (3/4) = (1/4) \subseteq Q(\mathbb{Z})$. Then $\mathfrak{a}^{-1} = (4/3)$.

I(A), the set of fractional ideals of A, is a monoid with identity A under this operation.

Lemma 1.4. Let A be a domain, and let $\mathfrak{a}, \mathfrak{b}$ be fractional ideals of A. Then $\mathfrak{a}^{-1}, \mathfrak{a} + \mathfrak{b}, \mathfrak{a}\mathfrak{b}$, and $\mathfrak{a} \cap \mathfrak{b}$ are fractional ideals.

Proof. Let $c, d \in A \setminus \{0\}$ such that $c\mathfrak{a} \subseteq \mathfrak{db} \subseteq$. Then $c(\mathfrak{a} \cap \mathfrak{b}), cd(\mathfrak{a} + \mathfrak{b}), cd\mathfrak{ab} \subseteq A$.

 $\mathfrak{a}^{-1} \neq 0$ since there exists $c \in A \setminus \{0\}$ such that $c\mathfrak{a} \subseteq A$. So $c \in \mathfrak{a}^{-1}$. Let $a \in \mathfrak{a}$ with $a \neq 0$. Then a = e/f with $e, f \in A$ and $f \neq 0$. Then $e \in \mathfrak{a} \cap A$. Now $e\mathfrak{a}^{-1} \subseteq a\mathfrak{a}^{-1} \subseteq A$ by definition of \mathfrak{a}^{-1} . So \mathfrak{a}^{-1} is a fractional ideal.

Definition 1.4. A fractional ideal \mathfrak{a} of A is **invertible** if there exists a fractional ideal \mathfrak{b} of A such that $\mathfrak{ab} = A$.

Lemma 1.5. Let \mathfrak{a} be a fractional ideal of A. Then \mathfrak{a} is invertible iff $\mathfrak{a}\mathfrak{a}^{-1} = A$.

Proof. (\implies): If \mathfrak{a} is invertible, then let $\mathfrak{ab} = A$. Then $\mathfrak{b} \subseteq \mathfrak{a}^{-1}$. Also, $A = \mathfrak{ab} \subseteq \mathfrak{aa}^{-1} \subseteq A$. So these inclusions are actually equalities.

Example 1.6. Let $\mathbb{Q}[x, y] \supseteq (x, y) = \mathfrak{m}$. What is \mathfrak{m}^{-1} ? Note that $f \in \mathbb{Q}(x, y)^{\times}$ satisfies $f\mathfrak{m} \subseteq \mathbb{Q}[x, y]$ if and only if $fx \in \mathbb{Q}[x, y]$ and $fy \in \mathbb{Q}[x, y]$. This is if and only if $f \in \mathbb{Q}[x, y]$. So $\mathfrak{m}^{-1} = \mathbb{Q}[x, y]$, and $\mathfrak{m}\mathfrak{m}^{-1} = \mathfrak{m}$. This is a bit weird; this is because $\mathbb{Q}[x, y]$ is not a Dedekind domain (Krull dimension 2).

Remark 1.1. If $a \in Q(A)^{\times}$, then $(a)^{-1} = (a^{-1})$, and $(a) \cdot (a^{-1}) = A$.

Lemma 1.6. Every fractional ideal in a PID is principal.

Proof. If \mathfrak{a} is fractional, then $d\mathfrak{a} \subseteq A$ is an ideal, generated by b. Then $\mathfrak{a} = (b/d)$. \Box

Lemma 1.7. If A is a Dedekind domain, and $\mathfrak{p} \subseteq A$ is a nonzero prime ideal, then $\mathfrak{p}\mathfrak{p}^{-1} = A$.

Proof. Let $a \in \mathfrak{p}$ with $a \neq 0$. There exists a minimal $k \geq 1$ such that $\mathfrak{p}_1 \cdots \mathfrak{p}_k \subseteq (a)$ (where \mathfrak{p}_i are prime and $\neq \mathfrak{a}$) by the lemma. Since $\mathfrak{p}_1 \cdots \mathfrak{p}_j \subseteq \mathfrak{p}$, $\mathfrak{p} = \mathfrak{p}_k$ without loss of generality. By the minimality of k, there exists a b in $\mathfrak{p}_1 \cdots \mathfrak{p}_{k-1}$ such that $b \notin (a)$. Then $a^{-1}b \notin A$. Then $a^{-1}b\mathfrak{p} \subseteq a^{-1}\mathfrak{p}_1 \cdots \mathfrak{p}_k \subseteq A$. So $a^{-1}b \in \mathfrak{p}^{-1}$. Note that $A \supseteq \mathfrak{p}^{-1}\mathfrak{p} \supseteq \mathfrak{p}$. If these are equal, then $a^{-1}b\mathfrak{p} \subseteq \mathfrak{p}$, and \mathfrak{p} is finitely generated.

Note that $A \supseteq \mathfrak{p}^{-1}\mathfrak{p} \supseteq \mathfrak{p}$. If these are equal, then $a^{-1}b\mathfrak{p} \subseteq \mathfrak{p}$, and \mathfrak{p} is finitely generated. So $a^{-1}b$ is integral over A. Since A is integrally closed, $a^{-1}b \in A$. But $a^{-1}b \notin A$, which is a contradiction. So $\mathfrak{p}^{-1}\mathfrak{p} \supseteq \mathfrak{p}$, where \mathfrak{p} is maximal (because A has Krull dimension 1), so $\mathfrak{p}^{-1}\mathfrak{p} = A$.